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The well-established relation between Potts models with v spin values and ran- 
dom-cluster models (with intracluster bonding favored over intercluster bonding 
by a factor v) is explored, but with the random-cluster model replaced by a 
much generalized polymer model, implying a corresponding generalization of 
the Potts model. The analysis is carried out in terms a given defined function 
R(p), an entropy/free-energy density for the polymer model in the case v = 1, 
expressed as a function of the density p of units. The aim of the analysis is to 
determine the analog Rv(p) of R(p) for general nonnegative v in terms of R(p), 
and thence to determine the critical value of density p,.~ at which gelation 
occurs. This critical value is independent of v up to a value vp, the Potts-critical 
value. What is principally required of R(p) is that it should show a certain given 
concave/convex behavior, although differentiability and another regularizing 
condition are required for complete conclusions. Under these conditions the 
unique evaluation of R,.(p) in terms of R(p) is given in a form known to hold 
for integral v but not previously extended. The analysis is carried out in terms 
of the Legendre transforms of these functions, in terms of which the phenomena 
of criticality (gelation) and Potts criticality appear very transparently and vr, 
is easily determined. The value of vr, is 2 under mild conditions on R. Special 
interest attaches to the function Ro(p), which is shown to be the greatest con- 
cave minorant of R(p). The naturalness of the approach is demonstrated by 
explicit treatment of the first-shell model. 

KEY W O R D S :  Polymers; Potts models; gelation; Fortuin-Kasteleyn 
representations; Legendre transforms, first-shell models. 

1. POLYMER MODELS; CRITICALITY 
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There is a useful and interesting class of polymer m o d e l s  ~3'4"7 13) for 
which the metric aspects of space are neglected, in that the assembly of 
units is regarded simply as a random graph. Units correspond to nodes of 
this graph and bonds between units to arcs between nodes. In this equiv- 
alence a polymer (i.e., a polymer molecule) then corresponds to a com- 
ponent of the graph. Usually one considers symmetric statistics on the 
complete graph, in that a bond can in principle be formed between any 
pair of units and the probability of a configuration is invariant under per- 
mutation of the units. One can regard such models as mean-field versions 
of an explicitly spatial model. 

In such models it is useful to include a parameter v which allows 
intrapolymer bonds (i.e., a new arc in an existing component) to be formed 
v times as easily as interpolymer bonds (i.e., a new arc between existing 
components). In the extreme case v = 0 intrapolymer bonding is forbidden, 
and all polymers must be trees. The assumption of large v would reflect the 
view that units within the same polymer molecule are contiguous in some 
sense, and so form new bonds more easily than would units in different 
molecules. 

This additional parameter corresponds exactly to the parameter q of 
the Potts model, as was revealed when Kasteleyn and Fortuin ~ estab- 
lished an equivalence between the Potts model and a simple random- 
cluster model. In ignorance of this work the author It3~ established this 
same equivalence, but working from the other direction, working from a 
polymer model which is a considerable generalization of the random- 
cluster models considered in the Potts-Kasteleyn literature. This paper 
essentially explores this generalization; we comment further on the mutual 
implications between the two problems in Sections 2 and 3. 

Consider then the statistics of N units. Despite the fact that the model 
has no metric structure, it is natural to introduce a parameter V which can 
be interpreted as 'volume,' in that the bonding rate between two given units 
is of order V- ~. In going to the thermodynamic limit one will then let N 
and V tend to infinity in constant ratio, 

p=N/V 

where p is then to be interpreted as the spatial density of units. 
Suppose the probability of a configuration c.g of these N identifiable 

units in a volume V is proportional to Q(CglN, V), where the propor- 
tionality factor is such that Q(N, V) = Z ~  Q(C-g I N, V) can be identified with 
the partition function of the system. Define 

V u 
A(N, V)=-~. Q(N, V) 
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If interactions are 'local' in that the thermodynamic limit indeed exists, 
then one will expect log Q, and so log A, to be extensive in that they are 
O(V) for large V and prescribed p. More specifically, that 

A(N, V) = e vmpl+ o~ v~ (1.1) 

for large V, so that V - I l o g A ( N ,  V) has a limit R(p) in the thermo- 
dynamic limit. In more familiar notation one has R = p - p  log p - f l F ,  
where F is the free energy per unit volume and/~ is proportional to inverse 
temperature. However, we shall be taking density of units p rather than 
temperature as the parameter of interest, whose variation exhibits the 
phase transitions of the system, and so work rather in terms of R. 

As an example, the version taken by the author t12~ of the so-called 
'first-shell' model corresponds (in the case v = 1) to the choice 

where sob is the number of bonds from node a to node b and n i is the 
number of units with j bonds (nodes of degree j). The configuration ~ is 
determined by the soo. The terms in x and the Hj then represent a Gibbs 
factor e -a~, where g is the potential energy of the configuration. The terms 
(V~"~s,b!)-~ are essentially combinatorial, reflecting the decreasing proba- 
bility of bonding between a given pair of units with increasing volume and the 
indistinguishability of distinct bonds between this pair of units. (Although 
the probability that multiple bonds exist between two prescribed units, 
conditional on the event that they are bonded, tends to zero in the thermo- 
dynamic limit.) 

It was shown by the author t~'121 that, for this case, 

Q(N, V)= \ 2rtJ ~ H(~)U e -~vr dr (1.3) 

where 

H ( ~ ) =  ~ Hj~J/j'! 
j =  O 

If H(~) is such that the integral (1.3) is convergent for all positive N, V, 
then it follows that, for this model, 

R(p) = p - p log p + sup [p log H(~)--  �89 (1.4) 

However, there is no need to argue in terms as specific as this. Let us 
assume merely that R(p) belongs to the class ~ of functions which, as p 
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increases from zero, are first strictly concave with infinite positive 
derivative at p = 0, and then become strictly convex at some density pg, to 
remain so thereafter. We illustrate the behavior in Fig. 1. The function (1.4) 
behaves in this fashion (see Section 8); we see that the initial concavity 
comes from the entropy term - p  log p and the later convexity from the 
final term in (1.4), proport ional  to the free energy. 

The value pg is then the unique value of p at which the derivative 
R'(p) is minimal. It can be said to mark a critical point, at least in the non- 
degenerate case when it is neither zero nor  infinite. To see this, consider 
two replicas of the model which are independent but communicating,  in 
that the probability of configurations r163 and cg 2 in the two replicas is 
proport ional  to Q(cg~ IN ~, V)Q(cg21N2, V) subject only to NI + N2 = 2N, 
where N; is the number  of units in configuration cg;. The joint distribution 
of the N; is then obtained by summing this expression both over configura- 
tions consistent with the N; and over permutations of the units, and so is 
given by 

P(NI, N2) ocA(Nl, V) A(N2, V) (N1 + N2 = N) 

The most probable value of the vector of densities p~ = N;/V in the thermo- 
dynamic limit is then that maximizing R(p i ) + R(p2) subject to ~(PI +P2)=p. 

Ps 

Fig. 1. The graph of R(p) (an entropy/free-energy density for the polymer model) as a 
function of the density p of units. It is initially concave, with infinite positive gradient at 
zero density, and then changes to being convex from p~. The value pg then marks the point 
of minimal gradient, and locates the gel point. 
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Proposition 1. Suppose that R(p)e~R and R'(p) is minimal at pg. 
If p < pg, then the configuration of equidistribution between two replicas 
p ~ = p 2 = p  is at least metastable, in that R ( p - 6 ) + R ( p + 6 )  is locally 
maximal with respect to ~ at 6 = 0. If p > pg, then it is not. 

That is, matter tends to lump in one or the other of the replicas if p 
exceeds pg, but will resist at least local perturbations from equidistribution 
if p is less than pg. In the polymer context this transition marks passage 
from the sol state to the gel state; the subscript g in pg is intended to 
indicate 'gel point.' 

Proof. I f 0 ~ < p - 6 < p + 6 ~ < p g ,  then 

R(p - 6) + R(p + 6) < 2R(p) 

by strict concavity. If pg ~< p - b < p + 6, then 

R(p - 3) + R(p + 6) > 2R(p) 

by strict convexity. The proposition then follows. �9 

One can now ask whether the assertion of metastability can be 
strengthened to that of global stability, in that R(p~)+ R(p2) has its global 
maximum, subject to prescription of mean density p, at p~ = p 2 = p .  We 
shall see in Section 7 that, under additional conditions, this strengthening 
is only just valid, in that equipartition gives the global maximum for any 
p less than pg, but that this assertion does not hold if one considers more 
than two replicas. Indeed, this statement holds even if we allow the number 
of replicas to be nonintegral, an extension which turns out to be necessary, 
natural, and unique. 

Consider indeed the case of an integral number v of replicas, independ- 
ent but communicating. If p~ is the density in the ith replica, then the most 
probable distribution of matter subject to prescription of the average 
density 

v-~ Z P,=P (1.5) 
i 

is that which maximizes ~ i  R(pi) subject to this constraint. Let us indeed 
define 

Rv(p) = sup v- '  ~ R(pi) 
i 

where the supremum is over the distribution ~pi} subject to condition 
(t.5}. Let us refer to values of density which are Less than or greater than 
pg as subcritical and supercritical, respectively. 

822/75/5-6-19 
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Proposi t ion 2. Suppose that R ~ .  Then in the most probable 
distribution over v replicas at most one replica is supercritical and all sub- 
critical replicas have the same density. Further, 

R,,(p) -- sup v - l [ ( v -  1 ) R(pl) + R(P2)] (1.6) 

where the supremum is over p~ and ,0 2 and subject to 

v-l[(  v -  1)Pt +P2]  =/9 (1.7) 

The maximizing pj is necessarily subcritical, and, if the maximizing P2 is 
also subcritical, then necessarily p ~ = P2 = P. 

The first assertion follows from the concave/convex nature of R by 
standard arguments; the others follow immediately from it. In polymer 
terms, the assertion is that the sol fraction has the same density in all 
replicas, and that the gel fraction, if there is one, is concentrated in a single 
replica. 

It will later transpire that, for any prescribed positive p less than pg, 
the inequality R,.(p) > R(p) holds for all large enough v. That is, if one puts 
sufficiently many replicas into communication at any prescribed positive 
average density of units, then fluctuations will bring one of the replicas to 
criticality and the ensuing gelation is stable. This is Potts criticality, 
remarked in ref. 14 for polymers. 

If we view the v replicas as v adjacent compartments in physical space, 
then we might term this a 'compartmental' model. However, such a view 
raises fundamental points, which we discuss briefly in Section 9. 

However, the point well recognized in the Potts-Kasteleyn literature, 
and which we shall discuss in the next section, is that the modification of 
R(p) to R,(p) can be brought about, not only by the consideration of v 
replicas of the original system, but by the introduction of a term in the 
distribution which favors the creation of a new bond within a polymer over 
one between polymers by a factor v. This modification is meaningful and 
interesting in itself, and is one not restricted to integral v. 

A preliminary aim of the paper is, first, to obtain an evaluation o f  
R,.(p) in terms of R(p) for all nonnegative v. It is shown in Proposition 8 
that the determination (1.6) for integral v generalizes simply, although the 
analysis is best pursued in terms of the Legendre transform of R,, as a func- 
tion of p. Qualitative features of the function are listed in Proposition 6 and 
depicted in Fig. 2. One striking and significant conclusion is that Ro(p) is 
the greatest concave minorant of R(p). 

A more fundamental aim is evaluation of the critical point as a func- 
tion p,.g of v. This evaluation is implied by the evaluation of Rv(p). It turns 
out that Pvg = Pg for v less than or equal to a critical value of v which we 
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shall term the Potts  critical value and denote by vp. For v > vp the critical 
point Pvg decreases with increasing v. 

A strengthening of assumptions yields the evaluation (7.1) of vp. 
Under rather weak assumptions this reduces to the evaluation v p = 2  
familiar from the literature, but there are interesting processes for which 
Vp>2. 

The basic assumption is that R should belong to tR, where ~ is the set 
of scalar functions of the nonnegative variable p which are first concave and 
then convex and have infinite positive derivative at the origin. A stronger 
assumption is that R should belong to ~R c, the set of those members of 
which have continuous first derivative. For the strongest conclusions we 
require that R belong to ~R*, the set of those members of ~Rc for which the 
function D(~,) defined in (7.2), (7.3) is increasing. The intuitive content of 
this additional condition is at least partly exhibited by the geometric inter- 
pretation given after (7.3). 

Finally, it is shown in Section 8 that all these conditions hold for the 
first-shell model, and some general implications of the analysis are briefly 
notes in Section 9. 

2. INTRA/INTERPOLYMER DIFFERENTIATION AND 
POTTS-KASTELEYN EFFECTS 

The usual random graph model adopted by mathematicians is a rather 
degenerate one from the physical point of view, as indeed is the ' random- 
cluster' model which arises in connection with the usual Potts model. It 
allows single bonds to form between distinct units (arcs between distinct 
nodes) independently, with a probability a / N  of occurrence for some a. The 
analog in our formulation would be to set H i -  1 in the single-shell model 
(1.2), so that there is no sensitivity to degree at a node, and the N 2 random 
variables sub (the number of arcs directed from node a to node b) are inde- 
pendent Poisson variables with common expectation 1/2K V. The choice of 
Poisson variables rather than 0/1 variables is much more natural mathe- 
matically, which probably means also physically. It implies the possibility 
of multiple bonding and self-bonding, although with a relative probability 
tending to zero for any given unit or unit pair in the thermodynamic limit. 
In this limit the two models show the same behavior. We shall refer to it 
as the 'Poisson model'; it is in a certain sense the zeroth-order model, in 
that others are obtained by superimposing additional interactions upon it. 
For the Poisson model H ( ~ ) =  e ~ and the evaluation (1.4) of R(p)  becomes 

R(p ) = p -- p log p + p2/(2~r (2.1) 

The relation between the parameters in the two versions is a = ply. 
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Suppose the possible distinguishable polymers (graph components) 
are labeled r = 1, 2 ..... with the rth type referred to as an r-mer. Then a 
generalization of model (1.2) (the maximal generalization in a certain 
sense, for symmetric bonding models on the complete graph) is to assume 
that 

Q(Cg]N, V)=I -  I (Fr v-b') .... (2.2) 
r 

where F, is a constant independent of N and V, br is the number of bonds 
in an r-mer, and mr is the number of r-mers in configuration ft. Since the 
configuration is one on N units, one must.have 

~.~ t u r n  r = N (2.3) 
r 

where n, is the number of units in an r-mer. The configuration r is deter- 
mined by prescription of the m, and prescription of the places of identified 
units. Distribution (1.2) is indeed a special case of (2.2). 

Define now the generating function 

Q(0, v ) = ~  ONA(N, V ) = ~  (OV) NQ(N' V) 
N! 

N N 

which is the grand partition function. It is possible (and, indeed, usual in 
this context) that this series diverges for all nonzero 0. This fact is not dis- 
turbing: relations between such generating functions give the concise and 
natural expression of relations between the coefficients in their expansions 
in powers of 0. However, this lack of convergence seemingly makes it 
necessary to form hypotheses in terms of A(N, V) rather than of the 
generating function ~) itself. 

The following result is proved in ref. 13; it is of such fundamental 
importance that we quote it as a proposition. 

Proposition 3. For .model (2.2) 

0.(0, V)=exp  F,O V ~" (2.4) 

Suppose now that model (2.2) is modified to 

Q(~IN, V)=Q~(<~IN, V)= va+c - : :  I" [ ( F r g - b ' )  mr (2.5) 
r 
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where B = Z~ mrb~ is the number of number of bonds in the configuration 
and C is the number of components. Then B + C - N  is the cyclomatic 
number of the graph-- the  number of bonds which are in excess in that it 
is the maximal number of bonds which could be removed while still leaving 
the polymers (components) connected. (Recall that b~>~nr-l, with 
equality in just those cases for which the r-mer is a tree.) 

The effect of increasing v is then to favor such excess bonding-- to  
favor the formation of intrapolymer bonds relative to interpolymer bonds. 
If we denote the grand partition O for model (2.5)by Q,, (so that O~ = Q), 
then we have the following important identity. 

Proposition 4. 

O_v(o, v)= 0_(o, V/v)" (2.6) 

ProoL Model (2.5) is again of the form (2.2), but with 
Fvr= v b'+~ .... Ft. Making this substitution in evaluation (2.4), we deduce 
just the relation (2.6). �9 

Identity (2.6) has a fascinating implication. Suppose that v is integral. 
Then relation (2.6) implies that the statistics for prescribed N, V, and v are 
identical with those for the case when the N units are distributed over v 
independent but communicating replicas of volume V/v in which the 
statistics are those for the case v = 1. That is, we return to the compart-  
mental models of Section 1. The same holds for the case of nonintegral v, 
except that one must then accept (and handle mathematically) the situa- 
tion of a nonintegral number of replicas. 

Relation (2.6) is of course that established in a special case by 
Kasteleyn and Fortuin tSI and which revealed the equivalence between Potts 
and random-cluster models. As Wu ~'5) observes, this equivalence had been 
well known to mathematicians. However, relation (2.6) is in some respects 
a very considerable generalization of those to be found in the Potts literature. 
It is more special than the identities reviewed in ref. 1, for example, in that, 
as we shall see in the next section, it corresponds to a Potts model on 
the complete graph, a mean-field model. However, it corresponds to a 
considerable generalization of the random-cluster model, and so of the 
interaction pattern permitted in the Potts model. Indeed, it constitutes the 
most general model on the graph which is symmetric in the vertices and 
allows components to be statistically independent in an open system (i.e., 
in the grand canonical ensemble). One can of course add the features of 
incomplete symmetry and of color to the graph, generalizations which we 
shall forswear in this paper. 
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We assume that if the logarithm of the partition function has the 
extensive form (1.1) in the case v = 1, then it continues to do so in the case 
of general fixed v, 

A,.(N, V) = e vR'~~176 (2.7) 

for some function R,(p). This is a hypothesis which certainly places no 
additional constraint upon the function R. We shall see in Section 6 that if 
R is in N, then it is 'infinitely divisible' in that a function Rv exists which 
satisfies (2.6) and (2.7) for any v>~0. Indeed, this determination of R,, in 
terms of R is unique if R belongs to ~,. and the additional condition is 
imposed that R,. be increasing in v, as would be the case if it were 
generated from the distribution (2.5). Whether A v(N, V) necessarily has the 
form (2.7) has yet to be demonstrated. It certainly does for positive integral 
v, as follows from the calculations at the end of Section 1. In the particular 
case when A,.(N, V) is derived from expression (2.5) it follows both that 
A,(N, V) is increasing in v and that assertion (2.7) holds for v=O [see 
Eqs. (9.2) and (9.3)]. It thus follows that logAn(N, V) is of order V in the 
thermodynamic limit for any nonnegative v, which is part way to the 
conclusion that V-~ log A ~(N, V) has a limit. 

Propositions 2 and 4 imply the evaluation (1.6) of R,, in terms of 
RI = R in the case of integral v. Our task is now to extend this evaluation 
to the case of nonintegral v and to deduce the effect of variation of the 
parameter v on phase transitions and the like. 

3. RELATION W I T H  THE P O T T S - K A S T E L E Y N  M O D E L  

The Potts model is an Ising model which allows q values of spin at 
each site. If one considers a mean-field model in which sites interact only 
with sites of the same spin value, and if N i out of N sites have the ith spin 
value, then the joint probability distribution of the Ni will be 

Here ~: is an interaction constant and V is a variable measuring the size of 
the system, proportional to N itself. We see then that this is exactly the 
situation of a distribution of N units over q independent but communi- 
cating replicas of a system. Indeed, as we see from comparison of (3.1) with 
(2.1), the system would be one with Poisson statistics, the statistics of (1.2) 
in the special case H i -  1. We know from Proposition 4 that the statistics 
of such a replicated system is identical with that in which the Poisson dis- 
tribution of bonds is weighted by a factor qB+C-~ where B+ C - N  is the 
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cyclomatic number of the graph constituted by the whole configuration. 
The parameter q is then to be identified with our parameter v. 

The random-cluster model implied in formula (3.1) is then the very 
simplest one, the Poisson model. By replacing this by our general polymer 
model we are replacing expression (3.1) by 

P({N~}) oc ]-I A(N~, V/q) 
i 

where A can take a rather general form--roughly,  one for which (1.1) 
holds with R in ~'. The other point is that we now consider nonintegral 
values v of q. 

The connection of Potts models with polymer models has been dis- 
cussed by Lubensky and IsaacsonJ 6~ They make the point that the range 
0 <  v < 1 is of particular interest (so that excess bonding is discouraged) 
and deduce some qualitative equivalences. Bl6te et aU 2) consider the case 
of nonintegral v computationally. The present paper pursues these ques- 
tions analytically for R in the general class ~ and, more explicitly, for the 
first-shell model. 

As far as polymer models are concerned, the author has followed a 
line over a sequence of publications ~~ which is continued here. The first 
two papers cl~ set the Flory-Stockmayer models on a firm basis as 
Markov processes. These concerned the case v = 0, when all polymers were 
trees. However, the natural extension of this version to general v was per- 
ceived at the end of ref. ! 1 and partially achieved in ref. 12. A very much 
simpler and more powerful analysis was then found in ref. 13 and set out 
as part of a systematic exposition in ref. 14. 

One should perhaps comment generally on the status of the Flory-  
Stockmayer theory, formulated initially in refs. 3, 8, and 9. As indicated 
above, this is a mean-field theory, and as such has been compared in ref. 7 
with nearest-neighbor bonding models on a d-dimensional lattice, the so- 
called 'percolation' models of polymerization. A systematic difference in 
critical exponents is remarked for d = 2 ,  which is, however, believed to 
vanish for d greater than some quite moderate value. The original Flory-  
Stockmayer model (which is the one considered in ref. 7) was one of irre- 
versible aggregation, parametrized by the 'conversion factor' (the propor- 
tion of possible bonds which have been realized, corresponding to the 
'probability of arc formation' in the simple mathematical models of random 
graphs) and in which cycle formation was impossible (implying restriction 
to the case v = 0). However, the model allows relaxation on all these points, 
as demonstrated in refs. 10-14. One can allow reversible dynamics and 
consider the consequent stochastic equilibrium; the model is then best 
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parametr ized by the density of units p. One can allow the binding energy 
of a polymer  to depend upon its configuration in almost  arbi t rary fashion, 
and there is no hindrance to cycle formation.  

4. THE FUNCTIONAL EQUATION FOR R,,(p) 

Note  an implication of identity (2.6): that 

Q,,(O, v ) =  Q,.,(O, v, V/v) Q.,.:(O, v: V/v) (4.1) 

where v = v~ + v z. This implies in turn a corresponding relation for R,.(p), 
as shown in the next proposit ion.  

Proposit ion 5. If v=v~ +v2, then 

Rv(p ) = sup[ (v #v) R,,,(p, ) + (v,/v) R,,:(p:) ] 

where the supremum is over  p~ and Pz subject to 

(v#v) p~ + (v:/v) P2 = P 

Proof. It follows from identity (4.1) that  

(4.2) 

(4.3) 

A,,(N, V ) =  ~. A,.,(N,, v I V/v) A,.,(N2, v 2 V/v) 
NI, N2 

where the summat ion  is subject to N ~ + N 2 = N .  Substituting the 
asymptot ic  form (2.7) with p j =  (vNz)/(viV) and equating the dominan t  
terms on each side of the last equation, we deduce relations (4.2), 
(4.3). �9 

5. A C O N J E C T U R E D  S O L U T I O N  

We shall demonstrate in the next section that Eq. (4.2) is solved by 

R,,(p) = ext v - l [ ( v -  1) R(p i )  + R(p2) ] (5.1) 

where ext denotes the taking of an ext remum with respect to p~ and P2 
subject to 

p l < p g ,  ( v - 1 ) p ~ + p 2 = v  p (5.2) 

and the ext remum is a supremum or an infimum according as v >  I or 
v < 1. Of  course, v takes values only in the range v >/0; if we speak of 'all 
v' we mean all v in this range. 
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We know already from (1.6) that formula (5.1) holds for v a positive 
integer. There are simple plausibility arguments which extend this result. 
However, these simple arguments become complicated when one tries to 
convert them into proofs, and the less direct approach of the next section 
turns out to be the economical and revealing one. 

The course of the function R,,(p) for varying p and v is illustrated in 
Fig. 2 and described more explicitly as follows. 

P r o p o s i t i o n  6. Suppose that R �9 ~,.. Then the following assertions 
hold for the function R,. as specified by (5.1). 

(i) It belongs to ~ for all v. 

(ii) It is nondecreasing in v. 

(iii) It is the unique nondecreasing solution of the functional equa- 
tion (4.2). 

(iv) Ro is the greatest concave minorant to R. 

(v) The Potts critical value Vp is greater than 1. If V<Vp, then 
R , . ( p ) = R ( p )  for p ~<pg and it continues convexly with continuous first 
derivative for p > pg. 

(vi) The critical value of density p,.g equals pg for v<~v o and 
decreases continuously with increasing v thereafter. For v > Vp the function 

I<~<'~P V=t 

P 
O<x~<l 

Fig. 2. The graph of R,.(p) for varying v. 
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R,,(p) equals R(p) for p ~<Pvg; as a function of p it shows a discontinuous 
increase in first derivative at Pvg and then continues convexly. 

We shall prove the various assertions in Section 6. In Section 7 we 
shall obtain some results on the determinat ion of the Potts  critical value vp 
and shall in fact find that  vp = 2 under rather  general conditions. The case 
of two replicas that  we used in Section 1 to determine pg is then exactly on 
the verge of Potts  criticality in most  cases. 

Assertion (iii) does not of  course prove that  expression (5.1) can be 
identified with the actual R,.(p). There is the question of uniqueness to be 
settled, and we can easily see that  some kind of condit ion is needed to 
ensure this (in fact, that R should have a cont inuous first differential). Sup- 
pose that we are given the function R~,(p) for some integer/~ exceeding vp. 
We know then that  Ru(p) and R(p) are related by relation (5.1), with v set 
equal to #. However,  we could never completely determine the function R 
in terms of R u from this relation. Suppose the maximizing value of p_, in 
(1.4) for v = # and p = Pug is p*, necessarily a supercritical value. Then R u 
does not depend upon the value of R(p) for Pug < P < P*; consequently, the 
form of R(p) in this interval cannot  be determined from the prescription of 
R ,  (apart  from the fact that it must be consistent with the prescribed value 
of p,.g). So, should R(p) itself show such behavior,  then the value of Rv(p) 
for nonintegral  v would not be completely determinable. 

One assertion that  we can conveniently and usefully prove now is 
assertion (iv): that Ro [as given by (5.1)] is the greatest concave minorant  
to R. This is in itself an interesting observation,  whose significance will be 
revealed in Section 9. 

The following geometrical proof  can easily be formalized. Suppose that 
O is given a prescribed value ~. We can write relation (5.2) in the form 

v- I (p2-p l )=p-p l  (5.3) 

where we know that  p~ is subcritical. We have drawn the situation ]'or a 
value of v less than 1 in Fig. 3. One can say that the aim is to choose P l 
and P2 consistent with (5.3), i.e., such that  the length of the line segment 
AB is v times that of AC, in such a way as to bring the point C as low as 
possible. In the limit as v tends to zero, then, P 2 - P l  must  also tend to zero 
and the line ABC becomes tangent to the graph of R(p). If fi is less than 
pg, then the height of C is minimized when the line is tangent at t~, so that  
Ro(/5) = R(tS). If ~ is greater than pg, then the height of C is minimized 
when the line is tangent to the graph at pg. Thus the graph of Ro(p) for 
p > pg is given by this fixed tangent line, and Ro is indeed just the greatest 
concave minorant  to R. 
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J 

t', e= es / 

Fig. 3. A demonstration that Ro(p), as determined by formula (5.1), is indeed the greatest 
concave minorant to R(p). 

6. Deduct ion  of  the solut ion and its propert ies 

We shall find that the key to the whole treatment is the use of the 
Legendre transform (or contact transformation). The Legendre transform 
of R(p) is defined as 

R(?) = stat [R(p)  -- ~p] (6.1) 
P 

where by 'stat '  we mean the evaluation of  the bracket at a stationary point 
with respect to p; the conjugate variable ), is then necessarily the gradient 
of R at the stationary point./~(V) is then in general a multivalued function 
of ,/, in that there are several stationary points for a given value of ~. The 
function thus has several branches, which we may write as/~i(7)(i = 1, 2,...), 
each generated as the tangent to the graph of R is rolled along a segment 
of R which is concave or  convex, and so on which there is a unique tangent 
with a given slope ~,. As this tangent line rolls over the graph of R(p), the 
value (or values) of/~(~,) is read off as the intercept on the vertical axis by 
a tangent of slope y; see Fig. 4. 

So, in our  particular case the function R is first concave and then 
convex, and so /~  has two segments, generated as the tangent rolls over the 
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?%tl0 

~ f ' 3  
I- 

P 

Fig. 4. The generation of the two branches M~(),) and M.,(~,) of the Legendre transform/~(y) 
of R(p) by the rolling of a tangent of variable siope ~, over the graph of Rip). Also an indica- 
tion of the additional property required later: that the ratio of the length of the line segment 
BC to that of AB should not decrease with increasing y. 

Fig. 5. 

\ 

/~, ~ )  

) 

The two branches, Ml(y ) and M2(~,), of the Legendre transform g(),) of R(p). The 
line L(7) is their common tangent at the cusp point at which they meet. 
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concave section or over the convex section, respectively; see Figs. 4 and 5. 
These two branches of /~(y) are central to the ensuing argument, so we 
shall give them their own notation: M~(?) and M2(y), respectively. They 
are respectively convex and concave, and meet in a cusp at the critical 
value 7g, the minimal slope R'(pg) of R, and both branches will be tangent 
at this point to a line L(?) with slope - p ~ ;  see Fig. 5. At least this is the 
case if there are no discontinuities in the first derivative of R(p). If there is 
such a discontinuity anywhere, then there will be a break in the corre- 
sponding branch of/~(?).  In particular, if there is an upward jump in first 
derivative at p~, from ~,~- to ?~,  say, then there will be a gap in the M2 
branch; see Fig. 6. 

The inverse of  transform (6.1) is simply 

R(p) = stat [/#(?) + ?p] (6.2) 
7 

This inversion is single-valued: there is only one branch of/~(?)  on which 
its derivative takes a prescribed value - p .  In our particular case, as one 
rolls a tangent line with slope - p  decreasing from 0 to - ~  over the graph 
of/~(~,), one rolls first over the graph of MI (so generating the concave part 
of R by the intercept on the vertical axis) and then onto the graph of M2 
(so generating the convex part). In general, the case when the permitted 
range of p is limited needs special consideration. However, the point does 
not arise in our case: the restriction to the permitted set p/> 0 is automati-  

\ \  

> 

Fig. 6. The two branches of ,~(y) in the case that R(p) has a discontinuity in derivative at 
the gelpoint. 
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cally achieved, thanks to the assumption that R(p) has infinite derivative 
at the origin. This has the implication that, in the most probable distribu- 
tion of matter over replicas, no replica is ever empty. 

We come now to the assertion which is the key one as far as this paper 
is concerned. 

Proposition 7. Suppose that functions A, B, and C of a variable a 
are related by 

A(a) = sup[B(al)  + C(a2)] (6.3) 

where the supremum is with respect to a~ and a2 subject to 

al + az = tr (6.4) 

Then one can write 

A(a) = sup stat [Bj(0) + Ck(O) + Oa] (6.5) 
j . k  0 

ProoL Suppose we weaken the taking of a supremum in (6.3) to the 
taking of a stationary point, subject still to condition (6.4). Then one finds 
easily that s t a t [B(a j )+  C(a2)] has, as a function of a, the Legendre trans- 
form B(?) + C(),). This has many branches, .,Tjk(~,)=Bj(?)+Ck(?). One 
now finds that the inversion (6.2) of the .~ thus determined is in general 
nonunique, because there will in general be many branches .4j~(),) on which 
there is a point of prescribed gradient - a .  This nonuniqueness simply 
reflects the fact that, when we weakened the taking of a supremum in (6.3) 
to the taking of a stationary point, then we replaced one function of a by 
a whole class. We must maximize over this class, which is exactly what 
evaluation (6.5) achieves. �9 

We are now in a position to deduce our principal conclusion. 

Proposit ion 8. Suppose that R e ~ c .  Then Rv(p) is uniquely deter- 
mined for v>~0. Its Legendre transform /~,,(?) has just two branches: the 
upper branch given by M~(y) and the lower by 

M,,2(y) = v - ' [ ( v - -  1 ) M~(?) + M:(?)]  (6.6) 

The inverse Legendre transform of this determination of/~v(?) is just the 
evaluation (5.1) asserted for R,.(p). 

Proof. Define 
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In the case of integral v this amounts to working in terms of total 
probabilities and unit numbers for the set of v replicas rather than per 
replica. In terms of S the functional equation becomes 

S~t + ~2(a) = sup[S,.t(al) + S,2(a2)] (6.7) 

where the supremum is with respect to tr~ and tr 2 subject to (6.4). The 
assertion of the proposition would imply that S~ has the branches vM~ and 
( v -  1) M~ + M2. If this were the case, then, according to Eq. (6.5), Sv~ +,.2 
has possible branches vM~, (v- 1) M~ + M2, and ( v -  2)M~ + 2M2, where 
v = v~ + v2. But this third branch is irrelevant. It competes with the second 
branch, in that both show the same range of gradients ( - p g  to - ~ ) ,  but 
the third lies below the second, and so can never yield the maximizing 
option in (6.5). We thus have the two branches, consistent with the 
proposed solution, and confirm that the proposed solution satisfies the 
functional equation (6.7). Correspondingly, the solution Rv corresponding 
to the proposed evaluation of/~,, solves (4.2). That the form asserted for 
/~,.(y) implies the form (5.1) asserted for Rv(p) follows again by an applica- 
tion of Proposition 7. 

Uniqueness can be proved if we can show that expression (5.1) 
provides the only possible solution of the functional equation (4.2) for 
v = 1/2. This is because it then gives only possible solution for v = 2 - "  for 
any positive integral n, and so for v = m2-"  for any positive integral m, n. 
That is, the asserted and actual solutions agree on a set of v dense on the 
half-line. They then agree everywhere, since both are monotonic in v. 

We shall prove the uniqueness of  the solution for v = 1/2 by analysis 
of a particular case which plainly generalizes. Suppose that R~/2 consists of 
three branches Fj(~) ( j =  1, 2, 3). If numbered in order of decreasing 
gradient, they must then have gradients in contiguous intervals [0, - p ~ ] ,  
[ - P t , - P 2 ] ,  and [ - P 2 , - ~ ]  with 0 < p t < p 2 < c t 3 .  The branches M~ 
and M2 of /~ must then be obtained by considering the nine possible 
branches �89 and taking the options which yield maximal R, as in 
(6.5). The branches chosen must be such as to make /~ continuous and 
with continuous derivative (i.e., such that R has continuous derivative and 
that there is no range of p for which it is undetermined). As the gradient 
- p  decreases from zero, M~ =F~ is initially the only option which has 
numerically small enough gradient. The only way to continue this consis- 
tent with continuity of both function and derivative is along either F2 or 
�89 + F2). We know from the argument above that the second option is 
the maximizing one, so that M2 = �89 + F2). For agreement of this con- 
tinuation with /~ we must then also have Pl =Pg. But this evaluation of 
M 2 has minimal gradient - �89  whereas the actual M2 shows 
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indefinitely large negative gradients and there are no further cusps or 
branches. We must thus have P2 = + ~  and the branch F 3 absent, and so 
have the determinations 

FI = MI ,  F_, = 2M2 - M1 

which is exactly the solution asserted for v = 1/2. �9 

Note the necessity of the continuity of the first derivative of R for 
uniqueness of the determination of R,.. Had there been a discontinuity in 
derivative at pg, say, then the branches M~ and M2 would have failed to 
meet, as in Fig. 6, and the argument which established the uniqueness of 
/~'1/2 would have failed. 

In Fig. 7 we sketch the two branches of ~'(7) for varying v and see that 
many of the conclusions of Proposit ion 6 follow immediately. The lower 
branch M,,2 is increasing in v, which implies the nondecreasing character of 
Rv. The fact that one inverts by rolling the tangent line first under M~ and 
then over M2 (as p increases from 0 to + or) implies that R,, belongs to ~ :  
first a concave section [equal initially at least to R(p) ]  and then a convex 
section. 

~ '=O 

it 

Fig. 7. The graph of the branch M,..,(7 ) for varying v. The development of any convexity in 
this branch as v increases signals the onset of Potts criticality. 
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Fig. 8. 

\ 

?ll 

A more explicit picture of a Potts supercritical case in terms of the Legendre 
transform. 

As v tends to zero, then the lower branch tends to a vertical line, Mo2. 
The t ransform/~o then has as Legendre inverse exactly the greatest concave 
minorant  to R(p), consistently with Proposi t ion 6(iv). 

However,  the striking point is the t ransparent  emergence and charac- 
terization of Pot ts  criticality. As v increases from unity, the lower branch 
M,.2(y) remains concave to begin with, but then as more  of M t is admixed, 
begins to develop a local convexity, presumably initially at yg. This marks  
the onset of Pot ts  criticality. In Fig. 8 we have drawn a case somewhat  
beyond this point. As the tangent is rolled leftward under M1 it meets M,.2 
(at slope -Pvg) before it has rolled as far as the cusp point. Transference 
to the lower branch takes place at this point already [-since to stay on the 
upper branch would yield a smaller value of R , (p ) ] .  At this transference 
there is a j u m p  in ~,, and so in the derivative of R,.(p). 

7. EVALUATION OF THE CRITICAL VALUE OF v 

One expects that  when Potts  criticality first occurs then it manifests 
itself at the gel point pg if we consider the behavior  of R,.(p) and at the 
cusp coordinate  yg if we consider the behavior  of/~,.(y). Tha t  is, when v first 
exceeds vp then this is manifested by the fact that  R~(p) exceeds R(p) in the 

822/75/5-6-20 
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range 0 ~ p ~< pg first at pg and by the fact that the graph of M,,2(y) crosses 
the common tangent at the cusp first at a ? value arbitrarily close to ?g. 
The first assertion is true under a condition no stronger than that R should 
lie in ~c. The second implies that the most probable configuration [i.e., the 
extremizing values of Pl and P2 in (5.1)] at pg should change continuously 
as v increases through vp, and stronger conditions seem to be needed to 
ensure its validity. 

Potts criticality first occurs when the graph of M,.2(y) meets a line 
which is tangent to the graph of M~ at some value 71 >7g, meeting it at 
some value 7 > Y~. That is, when the inequality 

M,.2(7) < Ml(y~) + M](7~)(y - YL) 

is first violated for some 7 > Y ~ > 7,- 

P r o p o s i t i o n  9. Suppose that R e N' c. Then Pvg decreases from pg as 
v increases from vp. 

Proof. The assertion is evident geometrically, although the equiv- 
alent manipulative proof is easily supplied. Suppose that v > vp, so that we 
can draw a common tangent to the graphs of M~ and M,,z as in Fig. 8. The 
slope of this tangent line is just - P , s '  As v increases, then so does M,.2, 
and the gradient of the common tangent must evidently increase. That is, 
p,.g decreases. Furthermore, the tangent line to M~ which will first be 
crossed by M,.2 as v increases is that for 7~ = Yg, with slope - p g .  Hence p,g 
decreases from pg. �9 

This last-mentioned tangent line is the common tangent to the graphs 
of M~ and M2 at 7g, illustrated in Fig. 5. It is the graph of the linear func- 
tion L(7 )=  c t -  P g ( 7 -  7s), where ct is the common value of Mj(yg) ( j  = 1, 2) 
and - P s  is the common value of M)(Tg). Define the function 

D" " L ( y ) - m z ( 7 )  
T J = -ff-d, ( ) 

This is nonnegative, and defined in the range y >t 7g. As just asserted, Potts 
criticality manifests itself when M,.z(~) exceeds L(7) for some 7- We see 
from the form (6.6) of M,.2(7) that this is exactly when v first exceeds 
1 + D(7) for some 7. That is, 

vp=  1 + in fD(7)  
y 

and the breakdown occurs at the infimizing value of 7. We thus 
immediately derive the following result. 
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Proposition 10. Suppose that D(y) is nondecreasing in y. Then 
Potts criticality manifests itself first at ?g, and 

Vv= 1 +l ira  D(y) (7.1) 
yJ. yg 

Now, we can also express D(y) as 

R(pg) -- R(p2) -- r(P, -- P2) 
D(Y)- R(pl) +--~g----pi~_ ~ (7.2) 

where p~ and P2 are the lower and upper roots of 

R'(p)=y (7.3) 

Expressed graphically, the requirement is that the ratio of the length of the 
segment BC to that of AB in Fig. 4 should not decrease as the common 
gradient ~ of the two tangents to the graph of R increases from its minimal 
value ~ .  At the end of Section 1 we defined ~* :  the set of functions R 
which both belong to :R C and obey this latter condition. Part of the asser- 
tions of the last two propositions can then be translated into the following 
assertion in terms of R(p). 

Proposition 11. Suppose that R E~* .  Then vp is determined by 
(7.1), with D(y) determined by (7.2), (7.3), and the solution is continuous 
in that, as p increases from P8 at this value of v, the values of p] and P2 
in solution (5.1) are just those yielded by (7.3) as y increases from ?g. 

The condition that R should belong to ~ *  is a perfectly realistic and 
verifiable one. We shall see in the next section that it is satisfied for all 
first-shell models for which the integral (1.3) converges. 

The evaluation (7.1) can be made much more specific under mild 
differentiability conditions on R. 

Proposition 12. Suppose that RE/R*. If R also has a continuous 
nonzero third derivative in the neighborhood of p g ,  then vv = 2. 

Proof. Denote the first and third derivatives of R at p~ by R' and R". 
Necessarily R" = 0 and R" > 0. Choose ? = R' + e for small, positive 5. Then 
(7.3) has the roQts 

pl ,  p~ = p~ -T- (6~/R")  '/~ + o(.,/-~) 

whence it follows that D ( y s + e ) =  1 +o(1).  Letting e tend to zero, we 
deduce the assertion. �9 
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The hypotheses of the proposition hold for the Poisson model, so 
implying the well-known result that vp = 2 for this case. However, we now 
see how little dependent this conclusion is on the Poisson character of the 
model. 

One can find examples for which Vp can take any value exceeding 
unity. Suppose that we do have a model for which v p = 2 ,  so that p,.~ 
decreases from ps as v increases from 2. Take R, as the R for a new pro- 
cess. It follows then that the critical value of v for the new process is 2/~ 
if ~ ~< 2, unity otherwise. 

However, there are less contrived examples. Suppose that R has a con- 
tinuous first derivative at p~ but that the second derivative is discontinuous 
there, taking values R"_ and R'~_ at values of p immediately less and greater 
than pg. These values must be respectively negative and positive. Evalua- 
tion (7.1) then reduces to 

= R" R" Vp 1 - (  _ /  +) (7.4) 

For an example of such a case, consider the 'cosh' model, a first-shell 
model for which 

H(r = cosh(~) = �89 r + e - e )  

This has previously been considered by the author"2~; it can be regarded 
as a Poisson model with the added constraint that units may form only an 
even number of bonds. The critical density pg has the same value s: as it 
does for the Poisson model. However, the model shows an additional 
degree of discontinuity: the maximizing value of ~ in (1.4) is zero for p ~< ~c; 
the stationarity condition 

pH'(~)/H(~) = s:~ (7.5) 

has a nonzero solution first for p > x. That is, there is essentially no bonding 
at all below criticality. Otherwise expressed, the sol phase consists essentially 
of monomers; only when large (gel) molecules are stable do any molecules 
form at all. Then R has a continuous first derivative but a discontinuous 
second derivative at criticality. One finds for the general first-shell model 
that 

R"= - p - '  +x- '  1 + 4  -~  H'/J 

where H and its derivatives are evaluated at the appropriate root ~ of (7.5). 
For the cosh model this leads to the evaluations 

R"_ = - -K- I ,  g"+ =~KI -1 
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whence we deduce from (7.4) that vp = 3. That is, the increased difficulty of 
bonding does not postpone the onset of gelation, but does postpone the 
onset of Potts criticality. 

8. THE  P A R T I C U L A R  CASE OF THE F IRST-SHELL M O D E L  

For the first-shell model (1.2) one readily finds that p and R'(p) are 
related to the maximizing value of r in (1.4) by 

p = x~H/H', y = R'(p) = log(H/p) = log(H'/x~) 

where H and its derivatives have the argument ~. Suppose that branching 
is possible, so that Hj > 0 for some j > 2. There is then a gel point pg which 
corresponds to the value of r minimizing H'/~, and so determined by 

1 --  ~ H " / H ' =  0 

Since H'/r is strictly convex on the positive half-axis, this equation has a 
unique solution there. 

Regularity requirements imply one further condition. If expressions 
(1.3) or (1.4) are to be finite, then log H(Q must grow at a less than quad- 
ratic rate as r goes to +oo. This ensures that configurations with an 
excessive number of bonds are improbable. One could also frame the 
condition by requiring that the turning points of the function 
p log H ( r  �89 2 of r should be maxima, whatever p. This implies the 
condition 

H") 
1 + ~  H---7]>O (8.1) 

Proposi t ion 13. For the first-shell model the Legendre transform 
/~(y) of R(p) has two branches; these are given by 

Mj(~) =ex t  [ e - r H ( r  �89162 2] ( j =  1, 2) (8.2) 
r 

where the extremum is a local maximum for j = 1 and a local minimum for 
j = 2 .  

ProoL From the expression (1.4) for R(p) we derive 

/~(7) = stat {p - p log p + sup[p log H(~) - �89 2 ] - py } (8.3) 
p 
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The stationarity conditions with respect to p and ~ are 

- l o g  p + log H -  y = 0 (8.4) 

pH'/H-- x~ = 0 (8.5) 

Substituting for p from relation (8.4) into relations (8.3) and (8.5), we 
deduce that /~(y) is given by the bracketed expression in (8.2) with the 
stationarity condition 

e-rH'(r = x~ (8.6) 

Expression (8.2) thus follows, with the convex and concave segments of 
/~(y) presumably being given by the maximizing and minimizing options, 
respectively. However, while the maximizing option certainly yields a 
convex function of ),, we must appeal to condition (8.1) to establish that 
the minimizing option yields a concave function. One finds that the second 
derivative of the function defined by (8.2) is 

H"'~-'[I+r _' H"']I 

Inequality (8.1) implies that this expression has the sign of ( 1 -  ~H"/H'), 
whence the convexity/concavity of the two branches follows. �9 

Proposit ion 14. For the first-shell model R(p) belongs to ~'*. 

Proof. That it has the concavity/convexity and continuous-differen- 
tial properties required of a function in ~1,. follows from the form of its 
Legendre transform /?(),). We require then only to establish that D(y) is 
nondecreasing. We can write 

L -- M 2 tb(~2) 
O(),) . . . .  

M j - - L  ~b(~ l) 

where we have used the relation (8.6) to express the quotient as a function 
of ~ instead of y. The functions M~ and M2 will then have the same e'xpres- 
sion as functions of ~, Mi being the evaluation of that function for ~ < ~g 
and M2 for ~ > ~8' The values ~1 and ~2 are the lesser and greater roots of 
(8.6) for given ~. 

We have then 

S: tog D(y) = l o g [ -  ~(~2)/ff(r = [~'(~)/l~(~)l] d~ (8.7) 
I 

with 

4(~) = const + (K~H/H') - �89162 + pg log(H'/~) 
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where the constant  is such that  this expression changes sign at ~g. One 
verifies directly that the differential of this last expression can be written 

] (p--p,)>~O 

Here p is the value corresponding to ~, whence it is evident that both 
brackets in the final expression change sign at eg and the whole expression 
remains nonnegative.  It follows than that  the integrand in (8.7) is non- 
negative, and hence (since ~1 and ~2 respectively decrease and increase as 
7 increases) that D(?) is an increasing function of ?. �9 

9. FURTHER I M P L I C A T I O N S  

The case v = 0 has an interesting and significant character.  The density 
p ,  is indeed a critical density for all v, in that  if we consider several (m, say) 
independent but communica t ing  replicas, then equidistribution over them 
will cease to be metastable  if p > p g ,  whatever v. It will cease to be 
absolutely stable for some p < pg if m > vp/v; this then never occurs in the 
case v = O. 

The character  of criticality is also different in this case. If v > O, then 
R,.(p) is strictly convex for p > p ,  and so for p in this range there is one 
supercritical replica complemented  by r n -  1 subcritical replicas with a 
common  (but positive) density. One may  say that the gel phase is con- 
centrated in a single replica (i.e., there is only one gel molecule, or  giant 
component )  and there is mat te r  in the sol phase, distributed uniformly over 
remaining replicas. In the case v = 0 matters  are different. 

Proposition 15. If p > pg and v = 0, then there are no subcritical 
replicas, and the distribution of units over replicas is indifferent in the sense 
that, if p,. is the density of units in the ith replica, then all configurations 
for which ~ P i =  mp and pi/> fig for all i are equally probable.  Otherwise 
expressed, the gel phase is distributed indifferently over replicas. 

The  'indifferent'  distribution is quite different from a 'uniform'  distri- 
bution over replicas. In the latter case equidistribution over replicas 
constitutes an equilibrium which is at least metastable.  In the former, all 
distributions of mat ter  in the set indicated are equilibria, but neutrally 
stable. Below criticality there is no gel fraction and the sol fraction is dis- 
persed uniformly over  replicas, presumably by migration. Above criticality 
the gel fraction is dispersed over  replicas, but not with the uniformity that 
the sol phase shows below criticality. Rather  than one gel molecule (giant 
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component), there are infinitely many, and the surplus to a critical density 
stays where it is rather than migrates. 

Proof. Since Ro(p) is concave, a most probable distribution is that in 
which the distribution is uniform: 

Ro(p,) <~ mRo(P ) (9.1) 
i = 1  

where p = m -  1 ~ t  P;. Suppose p > pg. Then inequality (9.1) will be strict if 
any p~ is on the strictly concave part of Ro; i.e., in the subcritical range. 
The first assertion thus follows. On the other hand, equality will hold in 
(9.1) if all the p~ are in the range where R 0 is linear; i.e., in the supercritical 
range. �9 

The evaluation of Ro as the greatest concave minorant of R is consistent 
with the analytic approach to the problem. Several points are raised in 
such an approach which we shall analyze elsewhere, but there are points 
which are worth making now heuristically. 

We see from relations (2.4), (2.6) that 

Q_,.(O, V ) = e x p  [,=~ ~ v~V'-~Gs(O)] 

where G~.(O) is the sum of FRO"" over all r-mers with exactly s excess bonds, 
i.e., for which b r +  1 - n r = s .  Thus Ao(N, V) is the coefficient of O N in 
exp[VGo(O)], which we can write as 

1 f e V G o ( O ) O - N  - 1 Ao(N, V ) = ~  i j dO (9.2) 

where the path of integration is an appropriate circuit in the complex 
plane. A saddle-point evaluation of the integral leads to the evaluation 

Ro(p) = inf[Go(0) - p log 0] (9.3) 
0 

where the infimum is over real, nonnegative 0. This is a concave function 
of p, identifiable with R(p) in the range p < pg. Criticality is revealed by the 
fact that, as p approaches pg, then 0 approaches a branch point 0g of 
Go(O). For p > pg the infimum in (9.3) must be regarded as attained at the 
fixed value 0 = 0g, and one has then in this range 

Ro(p) = Go(Og) - p log Og = R(pg) + R'(pg)(p - pg) 
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This is exactly the continuation of R into the supercritical region by its 
greatest concave minorant. 

Finally, if the replicas we have been considering really are regarded as 
communicating compartments in space, then there is an inconsistency in 
the specification of the process if new effects (such as Potts criticality) can 
occur as one considers more compartments. For self-consistency of the 
compartmental version of the process as an embryonic spatial version one 
must require that R, be independent of  v. This is just a way of saying that 
the freeing of communication between compartments in space should not 
be able to achieve anything more than can be achieved by passage to the 
thermodynamic limit. This invariance can hold only if R is concave. For 
the first-shell model this can be the case only when 'excess bonding' (and 
so cycle formation) is forbidden. 

However, such a demand is unnecessarily stringent. If we consider 
more general models than the first-shell model, then cycles can be allowed 
so long as there is some constraint of steric hindrance or the like which sets 
a sufficiently strong limit on the internal bonding pattern of a polymer 
molecule. If such constraints are sufficiently effective, then R(p) will be 
concave and the specification spatially self-consistent. 
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